2 research outputs found

    Urban energy consumption and CO2 emissions in Beijing: current and future

    Get PDF
    This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions

    The integration of social concerns into electricity power planning : a combined delphi and AHP approach

    Get PDF
    The increasing acceptance of the principle of sustainable development has been a major driving force towards new approaches to energy planning. This is a complex process involving multiple and conflicting objectives, in which many agents were able to influence decisions. The integration of environmental, social and economic issues in decision making, although fundamental, is not an easy task, and tradeoffsmust be made. The increasing importance of social aspects adds additional complexity to the traditional models that must now deal with variables recognizably difficult to measure in a quantitative scale. This study explores the issue of the social impact, as a fundamental aspect of the electricity planning process, aiming to give a measurable interpretation of the expected social impact of future electricity scenarios. A structured methodology, based on a combination of the Analytic Hierarchy Process and Delphi process, is proposed. The methodology is applied for the social evaluation of future electricity scenarios in Portugal, resulting in the elicitation and assignment of average social impact values for these scenarios. The proposed tool offers guidance to decision makers and presents a clear path to explicitl
    corecore